Effects of waterborne silver in a marine teleost, the gulf toadfish (Opsanus beta): effects of feeding and chronic exposure on bioaccumulation and physiological responses.

نویسندگان

  • Chris M Wood
  • Martin Grosell
  • M Danielle McDonald
  • Richard C Playle
  • Patrick J Walsh
چکیده

Marine teleosts drink seawater, and the digestive tract is a key organ of osmoregulation. The gastro-intestinal tract therefore offers a second site for the potential uptake and toxicity of waterborne metals, but how these processes might interact with the digestive functions of the tract has not been investigated previously. We therefore compared the responses of adult gulf toadfish (Opsanus beta, collected from the wild) to a chronic 22d exposure to waterborne Ag (nominally 200 microg L(-1)=1.85 micromol L(-1)), in the presence or absence of daily satiation feeding (shrimp). Ag exposure did not affect voluntary feeding rate. Feeding reduced the net whole body accumulation of Ag by >50%, with reductions in liver concentrations (high) and white muscle concentrations (relatively low) playing the largest quantitative roles. Feeding also protected against Ag buildup in the esophagus-stomach and kidney, and increased biliary and urinary Ag concentrations. The gill was the only tissue to show the opposite response. Although terminal plasma Na(+), Cl(-), and Mg(2+) concentrations were unaffected, there were complex interactive effects on osmoregulatory functions of the gastro-intestinal tract, including drinking rate, gut fluid volumes, and intestinal base secretion rates. At the end of the exposure, the plasma clearance kinetics of an arterially injected tracer dose of (110 m)Ag were faster in toadfish that had been chronically exposed to waterborne Ag, and (110 m)Ag accumulation in their red blood cells was reduced. After 32 h, higher amounts of (110 m)Ag were found in bile and urine, but lower amounts in the intestine of the Ag-exposed toadfish; there were no other differences in tissue-specific distribution. The results suggest that feeding reduces waterborne Ag uptake through the digestive tract and alters physiological responses, while chronic exposure enhances regulatory functions. The time-dependent actions of the liver in Ag scavenging and detoxification are highlighted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of prolonged copper exposure in the marine gulf toadfish (Opsanus beta). I. Hydromineral balance and plasma nitrogenous waste products.

Acute (96 h) and prolonged (30 days) copper exposure induced osmoregulatory disturbance and impaired nitrogenous waste excretion in the marine teleost, the gulf toadfish (Opsanus beta), which was found to be extremely tolerant to acute copper exposure with a 96 h LC50 exceeding 340 microM but exhibited disturbed mineral balance in response to both acute and prolonged exposure to approximately 1...

متن کامل

Hydromineral balance in the marine gulf toadfish (Opsanus beta) exposed to waterborne or infused nickel.

The effects of acute Ni exposure on the marine gulf toadfish (Opsanus beta) were investigated via separate exposures to waterborne nickel (Ni) and arterially infused Ni. Of the plasma electrolytes measured after 72 h of waterborne exposure (215.3 and 606.1 microM Ni in SW (salinity of 34)), only plasma [Ca2+] was significantly impacted (approximately 55% decrease at both exposure concentrations...

متن کامل

Guanylin peptides regulate electrolyte and fluid transport in the Gulf toadfish (Opsanus beta) posterior intestine.

The physiological effects of guanylin (GN) and uroguanylin (UGN) on fluid and electrolyte transport in the teleost fish intestine have yet to be thoroughly investigated. In the present study, the effects of GN, UGN, and renoguanylin (RGN; a GN and UGN homolog) on short-circuit current (Isc) and the transport of Cl-, Na+, bicarbonate (HCO3-), and fluid in the Gulf toadfish (Opsanus beta) intesti...

متن کامل

Changes to Intestinal Transport Physiology and Carbonate Production at Various CO2 Levels in a Marine Teleost, the Gulf Toadfish (Opsanus beta).

Most marine teleosts defend blood pH during high CO2 exposure by sustaining elevated levels of HCO3(-) in body fluids. In contrast to the gill, where measures are taken to achieve net base retention, elevated CO2 leads to base loss in the intestine of marine teleosts studied to date. This loss is thought to occur through transport pathways previously demonstrated to be involved with routine osm...

متن کامل

Guanylin peptides regulate electrolyte and fluid transport in the Gulf toadfish ( Opsanus beta ) 1 posterior intestine 2 3 4 5

Guanylin peptides regulate electrolyte and fluid transport in the Gulf toadfish (Opsanus beta) 1 posterior intestine 2 3 4 5 Ilan M. Ruhr*, Charlotte Bodinier, Edward M. Mager, Andrew J. Esbaugh, Cameron 6 Williams, Yoshio Takei, Martin Grosell 7 8 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, HSE 9 Division, Sanofi-Aventis Paris, France (current address),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Aquatic toxicology

دوره 99 2  شماره 

صفحات  -

تاریخ انتشار 2010